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On the computational complexity of Ising spin glass models 
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Departamento de MatemBticas, Universidad de Chile, Casilla 5272, Correo 3, Santiago, 
Chile 

Received 17 September 1981, in final form 13 April 1982 

Abstract. In a spin glass with Ising spins, the problems of computing the magnetic partition 
function and finding a ground state are studied. In a finite two-dimensional lattice these 
problems can be solved by algorithms that require a number of steps bounded by a 
polynomial function of the size of the lattice. In contrast to this fact, the same problems 
are shown to belong to the class of w-hard problems, both in the two-dimensional case 
within a magnetic field, and in the three-dimensional case. Np-hardness of a problem 
suggests that it is very unlikely that a polynomial algorithm could exist to solve it. 

1. Introduction 

The problem of spin glasses is of great interest both in solid state physics and in 
statistical physics. The materials studied are magnetic alloys such as 1% of magnetic 
impurities embedded in Cu or Au. A property of these systems is the cusp in the 
magnetic susceptibility at a well defined temperature, indicating a phase transition, 
but the question if there is another phase transition is not yet solved. 

Between two impurities there is an energy interaction 

H I Z  = -J(rI2)S1 S2, 

where Si is the magnetic moment (spin) of the impurity i, and the interaction J ( r )  
varies as cos(2KFr)/r3, where r is the distance between the impurities, and KF a 
physical constant. 

The energy of a spin configuration is given by the Hamiltonian 

H = - C J (  rii)Si Si + 1 F * Si, 
where F is an exterior magnetic field. 

The first step in modelling this problem is to substitute the random distribution 
of impurities by a disposition at the vertices of a regular lattice. The two-dimensional 
problem and the three-dimensional problem (written as 2D and 3D respectively) will 
be studied here. 

The second step is to associate to each edge ( i , j )  of the lattice an interaction Ai 
chosen randomly from {-U, 0, U}. 

Finally the three-dimensional vectors Si are replaced by one-dimensional vectors 
Si whose values can be *1 (Ising spins). 

For a spin configuration w (an assignment of values f 1 to variables {Si}), the energy 
is given by 

H ( w )  = -1 Ji$iSj +F 1 si. 
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It is believed that despite its strong simplifications, this model retains the relevant 
features of real spin glasses. 

In this model two mathematical problems arise. The first is the study of the 
minimum energy configurations called ground states, and the second is the calculation 
of the magnetic partition function 

f ( ~ )  = C exp[-H(w)/KTI, 
w € n  

where i2 is the set of all spin configurations, H ( w )  is the energy of the configuration 
w,  K is the Boltzmann constant, and T the temperature. 

The free energy from the magnetic degree of freedom is -KT logf(T),  and the 
equilibrium magnetic properties, magnetisation, entropy, magnetic energy, specific 
heat and susceptibility, can all be obtained by differentiating this function with respect 
to magnetic field and temperature. 

The function f was obtained by Onsager (1944) for an infinite two-dimensional 
grid, but only when all interactions are equal to 1 (the ferromagnetic case), and without 
a magnetic field. The same information has since been obtained for other planar 
two-dimensional lattices, but a generalisation of these results for the three-dimensional 
lattice, or the two-dimensional lattice within a magnetic field or to the two-dimensional 
lattice with a more general distribution of the interactions, has been largely researched 
but not obtained.. 

The mathematical difficulty of these problems has led many researchers to carry 
out simulations utilising finite lattices, e.g. Barahona et a1 (1982), Bieche et a1 (1980), 
Binder (1975), Kirkpatrick (1977). 

The study of finite lattices belongs to the field of algorithmic combinatorics. We 
will analyse their computational complexity in this paper. 

In a grid with n spins, finding a ground state consists of searching for a spin 
configuration among 2” that minimises the energy. The partition function is a sum 
with 2” terms. For problems of this type there is a general agreement that if a problem 
cannot be solved in less than a number of calculations that grows exponentially with 
the size of the problem, then the problem should be considered completely intractable. 
On the other hand, it is accepted that a ‘good’ algorithm is an algorithm that requires 
a number of calculations bounded by a polynomial function of the size of the problem. 
In our case the size of the problem will be the number of spins. 

In Fisher (1966) it has been shown that, for any planar lattice, the partition function 
can be computed by counting perfect matchings (dimers) in an expanded lattice. This 
can be accomplished in polynomial time by computing an appropriate Pfaffian (or 
determinant). 

In Bieche et a1 (1980) the problem of getting a ground state is solved, in 2D, with 
a polynomial algorithm, by finding a minimum weighted perfect matching in the graph 
of ‘frustrated faces’. 

In Barahona et a1 (1982) the morphology of the ground states has been studied 
with a related algorithm. This is done by obtaining the clusters of spins that have the 
same relative orientation in all ground states (clusters of ‘solidary spins’). 

In 8 3 we will develop a unifying framework to solve, in polynomial time, for any 
planar lattice, the following problems: computing the partition function; finding a 
ground state; study of the morphology of the ground states; computing the entropy of 
the ground state. 

This will be done by applying the matching theory (Cunningham 1978, Edmonds 
1965, Edmonds and Johnson 1973, Kasteleyn 1961, 1967, Lawler 1976). 
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After the results of Cook (1971) and Karp (1972), much work has been done to 
study the class of non-deterministic polynomial-time complete (NP-complete) prob- 
lems. This class includes many ‘classical’ problems in combinatorics, such as the 
travelling salesman problem, the Hamiltonian circuit problem, colourability of graphs, 
and integer linear programming, and all problems in the class have been shown to be 
‘equivalent’, in the sense that if one problem is tractable, then all are. Since many 
of these problems have been studied by mathematicians and computer scientists for 
decades, and no good algorithm has been found for even one of them, it is natural 
to conjecture that no such polynomial algorithm exists. We will show that some spin 
glass models belong to this class. The interested reader is referred to Aho et a1 (1974) 
and Garey and Johnson (1979) for a review of the theory of NP-completeness. 

In 0 4  we show that for both models, 2D within a magnetic field and 3D, there 
cannot exist a polynomial algorithm to compute the energy of the ground state (and 
the partition function), without the existence of a polynomial algorithm for all the 
NP-complete problems, 

Some necessary graph theory definitions are given in § 2. 

2. Definitions 

In this section we summarise some basic definitions from graph theory, referring the 
reader to Berge (1970) and Harary (1969) for a more complete discussion. 

A graph G = (V, E) consists of a set of vertices V, and a set E of unordered pairs 
of different vertices called edges. In our case vertices are associated with spins and 
edges with non-zero interactions. A chain between o1 and U, is a sequence of edges 
of the form (ut, v2) ,  (v2 ,  u ~ ) ,  . , . , U,). A cycle is a chain with u1 = up. To draw 
a graph we associate points to vertices and lines to edges. A graph is said to be 
embedded in a surface S when it is drawn on S so that no edges intersect. A graph 
is planar if it can be embedded in the plane, and a graph is toroidal if it can be 
embedded in a torus and not in the plane. For an embedded graph the regions defined 
by this embedding are called the faces. Given an embedded graph we define the 
geometric dual as follows: place a vertex in each face and, if two faces have an edge 
e in common, join the corresponding vertices by an edge e* crossing e. 

Given two cycles C1 and C, we define Cl+C2 as the symmetrical difference 
between C1 and C2. A cycle generating family B is a set of cycles such that every 
cycle C can be expressed as C = C1 + C2 + . . . + Ck, with {Cl, . . . , Ck} E B. For planar 
graphs a cycle generating family are the faces. For toroidal graphs we have to add 
two cycles looping the torus. These cycles are essential and non-homologous. 

For a graph G = (V, E) a perfect matching is a set M c E such that each vertex 
has only one edge of M adjacent to it. 

An oriented graph is a graph G = (V, E) where E is a set of ordered pairs of 
vertices such that if ( i j )  E E then ( j ,  i) E! E. To an oriented graph we can associate a 
matrix B = [bi i ] ,  where 

1 if ( i j )  E E 
b . .=  -1 if ( j i )  E E 
” L otherwise. 

This matrix will be called the adjoint matrix of G. 
Kasteleyn (1961, 1967) has shown that, for plagar graphs, there exists an orienta- 

tion of the edges such that the absolute value of the Pfaffian of B (Pf(B)) equals the 
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number of perfect matchings of G, and furthermore, each non-vanishing term of Pf(B) 
corresponds to a perfect matching. As (Pf(B))’ = De@), the Pfaffian can be computed 
in polynomial time. 

Given a graph G = (V, E )  and C c V we denote by S(C)  the set of edges with 
exactly one extremity in C ;  S(C) will be called a cocycle. A stable set S is a set of 
vertices such that if u and U belong to S then ( u u )  & E. The degree of a vertex is the 
number of edges adjacent to it. For a set S we will denote the cardinality of S by 
ISI. 

3. The two-dimensional problem 

3.1. Preliminaries 

In this section we consider two types of grids, the planar 2D problem and the 2D 
problem with periodic boundary conditions. This last grid is a toroidal graph. Given 
a grid G = (V ,  E ) ,  to each vertex i is assigned a spin SI = *l ,  and to each edge ( i j )  is 
assigned an interaction JI,. 

A spin configuration is an assignment of values *l to the variables {SI} .  If all the 
signs of the variables {S,} are reversed, a new configuration is obtained which has the 
same energy as the former one. These pairs of spin configurations will be called pairs 
of equivalent configurations. 

Given a pair of equivalent configurations an edge (ij) is satisfied if 

Jil > 0 and S,SJ = 1, or JII < O  and S,S, = -1, 

For a cycle having an odd number of negative interactions there is no spin 

The following two theorems are mentioned in Bieche et a1 (1980) and proved in 

otherwise the edge is said to be unsatisfied. 

configuration that satisfies all the edges. Such cycles are said to be frustrated. 

Bieche (1979). 

Theorem 1. There is a one-to-one correspondence between pairs of equivalent 
configurations and sets of unsatisfied edges verifying: (1) for every frustrated (unfrus- 
trated) cycle there is an odd (even) number of unsatisfied edges. 

The following stronger theorem is more useful. 

Theorem 2. There is a one-to-one correspondence between pairs of equivalent 
configurations and sets of unsatisfied edges verifying (1) for the elements of a cycle 
generating family. 

Furthermore, given a pair of equivalent configurations it is easy to see that the 
energy can be expressed as follows. 

(2) H = - 1 JlJSls, = - 1 IJIJ/  + 2  1 l J I J I *  

lIJ)EE ( I J ) E E  unsatisfied 
edges 

3.2. The planar 2 0  problem 

In this case, the faces form a cycle generating family. Then equivalent configurations 
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are represented by sets of unsatisfied edges such that every frustrated (unfrustrated) 
face has an odd (even) number of those edges. Thus, if on each unsatisfied edge we 
draw a perpendicular line, a set of unsatisfied edges will be constituted by a set of 
chains joining pairs of frustrated faces and a set of closed polygons; see figure 1. 

Figure 1. - Positive interaction, * Frustrated face, 7 Positive spin, - Negative 
interaction, - Unsatisfied edge, r( Negative spin. 

This fact suggests to us to work in the dual graph G*. Vertices of G* will be 
called ‘odd’ and ‘even’ depending whether they represent a frustrated or unfrustrated 
face respectively. Odd (even) vertices must have an odd (even) number of unsatisfied 
edges adjacent to them. 

Now we will describe how to transform G* in a graph d such that there is a 
one-to-one correspondence between configurations of unsatisfied edges in G* and 
perfect matchings in d.  The first step of this transformation consists in expanding 
any vertex U of degree q > 3 in (q  -- 2) copies of degree three as is shown in figure 2. 
If U is even, all its copies will be even. And if U is odd, one of them (arbitrarily) will 
be odd and all the others even. 

Figure 2. 

Now we will deal only with vertices of degree three. For an odd vertex of degree 
three we make the transformation schematised in figure 3. 

Figure 3. 
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Each configuration of unsatisfied edges corresponds to a perfect matching as is 
shown in figure 4. 

Figure 4. 

Even vertices of degree three are transformed as in figure 5 .  

Figure 5. 

Each configuration of unsatisfied edges is in correspondence with a perfect match- 
ing, see figure 6. 

Figure 6. 

To each edge e of d that represents an edge (ij) of the lattice G, the weight 
G ( e )  = lJiii is assigned. The weight G (  a )  of the other edges of d will be 0. We define 
the weight of a matching as the sum of the weights of edges in the matching. 

By the transformations just described, it is clear that there is a one-to-one corres- 
pondence between pairs of equivalent configurations and perfect matchings in 6. If 
W is the weight of the matching, by equation ( 2 ) ,  the energy is 

As the energy is a linear function of the weight of the matching, plus a constant, 
matching theory can be applied to solve the problems described below. Kasteleyn's 
procedure to count perfect matchings can be applied to compute the partition function. 
In the adjoint matrix B each coefficient with value *1 corresponding to the edge e 
is replaced by * x ~ ' ( ~ ) ;  thus 

Pf(B) = 1 UkX 

where ak is the number of perfect matchings of weight k / 2 .  
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Setting x = exp(-l/kT), and I = -Z(ij)EE IJijl, the partition function becomes 

f [ T ( x ) ]  = 2%’ Pf(B). 

This procedure is polynomial because the Pfaffian of a matrix can be computed in 
polynomial time. 

A ground state can be obtained by utilising Edmonds’ (1965) algorithm to find a 
minimum weighted perfect matching. If the primal algorithm for optimum matching 
(Cunningham 1978) is utilised, each change of the matching points out a cluster of 
spins that should be turned over to diminish the energy. 

The knowledge of the structure of the ‘clusters of solidary spins’ can aid the study 
of the degeneracy of the ground state. Two spins are called solidary if they have the 
same relative orientation in all ground states. Clusters of solidary spins are joined by 
rigid edges. An edge is rigid if it is either satisfied or unsatisfied in all ground states. 

Given a ground state (or a minimum weighted perfect matching in G), an edge e 
is rigid if: 

(i) e belongs to the matching and any E > 0 that is added to @ ( e )  does not change 
the minimum weighted perfect matching; 

(ii) e does not belong to the matching and any E > O  that is subtracted from @(e) 
does not change the minimum weighted perfect matching. 

The set of rigid edges can be determined efficiently with standard post-optimality 
procedures of linear programming (Dantzig 1962) and the primal algorithm for 
optimum matching (Cunningham 1978). The entropy of the ground state can be 
obtained in polynomial time by applying Kasteleyn’s procedure to count the minimum 
weighted perfect matchings in 6. 

3.3. The two-dimensional problem with periodic boundary conditions 

In this case the graph G is toroidal. The cycle generating family includes faces and 
two cycles looping the torus ( Y  and 2)  as is shown in figure 7. 

Figure 7. 

Let us suppose that these two cycles are unfrustrated (the other cases are treated 
analogously). 

As in § 3.2 we pass to the geometric dual G* and do the same transformations to 
obtain 6. There is a one-to-one correspondence between pairs of equivalent configur- 
ations and perfect matchings in 6 traversing both cycles Y and 2 an even number 
of times. 

The graph C? can be represented by a rectangle where the opposite sides are 
identified. The horizontal sides represent the cycle Y and the vertical sides represent 
2. Let us call edges traversing Y vertical edges and edges traversing 2 horizontal 
edges. 

Following the ideas of Kasteleyn (1961), we define (e, e) configurations as perfect 
matchings traversing both cycles Y and 2 an even number of times. In an analogous 
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way we define (0, e), (e, 0) and (0, 0) configurations, where the first symbol refers to 
horizontal edges and the second to vertical edges, o means odd and e means even; 
see figure 8. 

i e , e )  configurntion 
w io.el configurntion 

1e.o) configuration io,ol configuration 

Figure 8. 

The graph e without the horizontal and vertical edges can be oriented as a planar 
graph. Then, horizontal edges are oriented regardless of vertical edges, and finally, 
vertical edges are oriented regardless of horizontal edges. We obtain an adjoint matrix 
B1 where Pf(Bl) counts only (e,e) configurations with the correct sign and all the 
others with the opposite sign. Then, three other adjoint matrices are defined: 

B2 is obtained by reversing only vertical edges. 
B3 is obtained by reversing only horizontal edges. 
B4 is obtained by reversing both horizontal and vertical edges. 
Pf(B2) counts all configurations correctly except for the (0, e) configurations. 
Pf(B3) counts all configurations correctly except for the class (e, 0) and Pf(B4) 

Utilising the definitions of § 3.2, the partition function can be written as 
counts all of them correctly except for those of type (0, 0). 

f [ T ( X ) ]  = 2X'i(-Pf(B1)+Pf(B*) +Pf(B,)+Pf(B4)) 

= x' (-Pf (B1) + Pf (B*) + Pf (B3) + Pf (B4)) * 

4. NP-hard models 

4.1. Preliminaries 

The theory of NP-completeness shows that most of the well known problems which 
appear to be intrinsically intractable are equivalent, in the sense that either all of 
them or none of them admit of polynomial-time algorithms. A problem is called 
Np-hard if the existence of a polynomial algorithm for its solution implies the existence 
of such an algorithm for all the NP-complete problems. To show that a problem is 
NP-hard it suffices to describe a polynomial transformation that reduces a known 
NP-hard problem to the one that is considered. Such transformations will be presented 
for some spin glass models. 
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4.2. The three-dimensional problem 

In Yannakakis (1978) it was shown that the following problem is Np-hard. 

PI: Cocycle of maximum cardinality in a cubic graph 
Given a graph G = (V, E) with each vertex of degree three, find the maximum 
cardinality of a cocycle. 

We will show that any graph given as input of P1 can be transformed in order to 
be embedded in a three-dimensional lattice. Afterwards it is shown that the ground- 
state energy of the associated spin glass allows us to know the maximum cardinality 
of a cocycle in the original graph. 

Given a graph G = (V, E) and a weighting function J : E +  R, let us define the 
weight of a cocycle as the sum of the weights of the edges that belong to the cocycle. 

Let us show two technical lemmas before transforming P1 into our problem. 

Lemma 1. If each edge of the input graph of P1 is replaced by a chain of edges all 
with weight 1 except one with weight -1, there is a cocycle whose weight is at most 
-k in the new graph if and only if there is a cocycle whose weight is at least k in the 
initial graph. See figure 9. 

Figure 9. 

The proof of this lemma is straightforward. 

Let us now call a two-level grid a graph as in figure 10. 

Figure 10. 

Let us define the problem P2 as follows. 

P2: 
Given a two-level grid G = (V, E), and a weighting function J: E -* {-1, 0, l}, find a 
cocycle of minimum weight. 

Lemma 2. P2 is NP-hard. 

Proof. We shall describe how P1 is reducible to P2. Let G = (V, E) be the input for 
P1, where V = {ul, . . . , U,} and E = { e l ,  . , . , e,,,}. The first level of the new graph has 
nodes {[ui ,  ei, 1111 s i d n, 1 c j c m }  located as in figure 11. 
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For each edge e, = (U,, u , + ~ )  E E  a chain is placed in the new graph with edges ([U,, e,, 11, 
[ u l + l ,  e,, 111, ([u,+1, e,, 11, [ul+2, e,, 111, . . . , ([u,+,-I, e,, 11, [U,+,, e,, ll), all with weight 1 
except one with weight - 1. 

The second level has vertices {[U,, e,, 2111 s i s n, 1 s j s m}, located similarly. For 
each vertex U[, let e,, e,+p, e,+,+, be the adjacent edges to it. Then a chain is placed 
with edges ([U,, e,, 21, [U,, e,+l, 211, ([U,, e,+l, 21, [U,, e,+2, 21) . . . , ([U,, e,+p+q-l, 21, 
[U,, 2]), and the two levels of the graph are joined by means of the edges 
([U,, e,, 11, [U,, e,, 211, ([U,, e,+p, 11, [U,, e,+,, 211, ([U,, e,+,+,, 11, [U,, e,+,+,, 21). All these 
edges are given weight 1. 

If the vertex [uI ,  e,+p,  21 is associated to the vertex uI of G, and the three chains 
that begin in [U,, e,+,, 21 are associated to the three edges adjacent to U, in G, the 
above is a transformation as described in lemma 1. Figure 12 illustrates this con- 
struction. 

Now the two-level grid is completed by adding the missing edges with weight 0. 
As the edges with weight 0 can be ignored, by lemma 1 there is a cocycle in G whose 
cardinality is at least k if and only if there is a cocycle in the two-level grid with 
weight at most -k. 

The transformation is polynomial, because the number of vertices of the two-level 
grid is 2) VI /El. This completes the proof of the lemma. 

Figure 12. 0 Vertex of the first level. 0 Vertex of the second level. = Edge with 
weight -1. - Edge with weight 1. 

Let P3 be the following problem. 

P3: Two-level spin glass 
Given a two-level grid G = (V, E ) ,  and a weighting function J :  E + {-1, 0, l}, find the 
minimum of 

with Si E {-1, 1) for each i E V 

Theorem. P3 is NP-hard. 
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Proof. We claim that there is a cocycle of weight W in G if and only if there is an 
assignment of values to variables {Si} such that 

-1 JijSiSj = 2  W -  1 Jij. 
(i j)EE 

Suppose there is C c V such that 

1 Jij = W. 
( i i ) E G ( C )  

Set Si= 1 for i e C  and Si =-1 for i E  V-C. Then we have 

On the other hand, suppose that there is an assignment of values to the variables {S i }  
such that 

-c JijSiSj = 2 W - Jij. 
(i i)  

Let C be 

C = {itsi = 1). 

Then we have 

and the claim is proved. 

The NP-hardness of P3 shows that the problem of finding a ground state in a 
three-dimensional spin glass is NP-hard, even in a two-level grid and with interactions 
restricted to be {-1, 0,1}. As a polynomial algorithm to compute the partition function 
would permit us, in this case, to know the energy of the ground state, the following 
theorem is derived. 

Theorem. The problem of computing the magnetic partition function in a three- 
dimensional spin glass is NP-hard. 

4.3. The two-dimensional problem within a magnetic field 

As in § 4.2 we start from the following NP-hard problem (Maier and Storer 1977). 

P4: Maximum stable set in a planar cubic graph 
Given a planar graph G = (V, E), with all its vertices of degree three, find the maximum 
cardinality of a stable set. 

Let us define the following problem. 

P5: Planar spin glass within a magnetic field 
Given a planar graph G = (V, E), find the minimum value of 

where Si E (-1, 1) for each i E V. 
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P5 can be interpreted as a planar spin glass with all its interactions antiferromagnetic 
(Jjj  = -1 for all (i, j )  E E )  within a magnetic field F = 1. 

Theorem. P5 is NP-hard. 

Proof. Let G = (V ,  E )  be the input graph in P4 and associate a variable X, E (0 ,  1) to 
each vertex i E V. It is easy to see that there is a stable set whose cardinality is at 
least k if and only if there is an assignment of values to the variables {Xili E V }  such 
that 

Setting Si = 2Xi - 1, V i  E V we obtain 

For H = -4L + $ I  Vi we see that there exists a stable set whose cardinality is at least 
k if and only if there is assignment of values to the variables SI E {-1, I}, i E V such that 

H =  s,s,+c S 1 4 J V I - 4 k ,  
( i i l ~ t  It v 

and the theorem is proved. 

Since the existence of a polynomial algorithm that computes the partition function 
would also enable us to know the energy of the ground state, we can state the following 
theorem about the partition function. 

Theorem. In a planar spin glass within a magnetic field the problem of computing the 
magnetic partition function is w-hard.  

Let us remember that in the absence of a magnetic field, all the algorithms of § 3 
apply. 

5. Concluding remarks 

We have classified the spin glass models into hard and easy ones. Much work can be 
done to improve the polynomial algorithms presented in the 2D case or to specialise 
them in the case of more specific problems (e.g. finding the ground state with periodic 
boundary conditions). On the other hand, the NP-hardness of the other models justifies 
the use of approximative algorithms, and shows that dimensionality plays an important 
role in their computational complexity. 
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